<form id="u64dhd"></form>

<address id="u64dhd"><listing id="u64dhd"><meter id="u64dhd"></meter></listing></address>

        <em id="u64dhd"></em>

        <form id="u64dhd"></form>

          
          

              電子所務 │郵箱登錄 │ ARP入口 │ 聯系我們 │ English
              站內檢索
              科研成果
              更多
              您現在的位置:首頁 > 新聞动态 > 學科熱點
              The wind-driven formation of cross-shelf sediment plumes in a large lake
              【发布时间:2019-07-11 】 【 】【打印】【關閉
              McKinney, Paul; Austin, Jay; Fai, Gills; et al.
              Wind-driven turbidity plumes frequently occur in the western arm of Lake Superior and may represent a significant cross-shelf transport mechanism for sediment, nutrient, and biota. Here, we characterize a plume that formed in late April 2016 using observations from in situ sensors and remote sensing imagery, and estimate the volume of cross-shelf transport using both the observations and an idealized analytical model of plume formation. The steady-state, barotropic model is used to determine a relationship between the intensity and duration of a wind event and the volume of water transported from nearshore to offshore during the event. The model transport is the result of nearshore flow in the direction of the wind and a pressure-gradient-driven counter flow in the deeper offshore waters, consistent with observations. The volume of offshore transport associated with the 2016 plume is estimated by both methods to have been on the order of 10(10) m(3). Analysis of similar events from 2008 to 2016 shows a strong relationship between specific wind impulse and plume volume. Differences in the intensity and duration of individual events as well as ice cover, which prevents plume formation, lead to interannual variability of offshore transport ranging over an order of magnitude and illustrates how wind-driven processes may contribute to interannual variability of ecosystem functioning.
              (来源:LIMNOLOGY AND OCEANOGRAPHY, 2019, 64(3):1309-1322)
              附件

                  <kbd id='u64dhd'></kbd><address id='u64dhd'><style id='u64dhd'></style></address><button id='u64dhd'></button>

                          <kbd id='u64dhd'></kbd><address id='u64dhd'><style id='u64dhd'></style></address><button id='u64dhd'></button>

                              热门地区: 和县 邯郸 河源 兴化市 调兵山 海伦 资阳 黑河 灯塔 宜州 黑河 泰州 胶州 昌平区 东城区 临江市 扬州 泸州 东营 深州市 敦化市 防城港 延安 建湖 建瓯市 丰镇市 嘉善 四平 招远 济宁 德州 江北区 沧州 哈尔滨 海宁 宜宾 黑龙江 盖州 包头 河池 长兴 仪征市 合肥 江津市 武夷山 邵阳 曲阜 淮安 宁国 兴城 成都 景德镇 五大连 晋江市 威海 龙岩 大足县 惠州 日照 沭阳 霍邱 霍林郭 青铜峡 潮州 德清 防城港 温州 牡丹江 台州 三明 漳州 大兴安 海林 嘉兴 亳州 根河市 吉林 东港 莱芜 安庆 桂林 鸡西 武安市 扬中市 通州市 凌海 石狮 怀柔区 临海市 泰州 武清 巴彦淖 齐齐哈 呼伦贝 盖州 鄂尔多 昆山市 绍兴 南安 双城